Full Content is available to subscribers

Subscribe/Learn More  >

Study of the Sequential Constraint-Handling Technique for Evolutionary Optimization With Application to Structural Problems

[+] Author Affiliations
Damien Motte, Axel Nordin, Robert Bjärnemo

Lund University, Lund, Sweden

Paper No. DETC2011-47057, pp. 521-531; 11 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 37th Design Automation Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5482-2
  • Copyright © 2011 by ASME


Engineering design problems are most frequently characterized by constraints that make them hard to solve and time-consuming. When evolutionary algorithms are used to solve these problems, constraints are often handled with the generic weighted sum method or with techniques specific to the problem at hand. Most commonly, all constraints are evaluated at each generation, and it is also necessary to fine-tune different parameters in order to receive good results, which requires in-depth knowledge of the algorithm. The sequential constraint-handling techniques seem to be a promising alternative, because they do not require all constraints to be evaluated at each iteration and they are easy to implement. They nevertheless require the user to determine the ordering in which those constraints shall be evaluated. Therefore two heuristics that allow finding a satisfying constraint sequence have been developed. Two sequential constraint-handling techniques using the heuristics have been tested against the weighted sum technique with the ten-bar structure benchmark. They both performed better than the weighted sum technique and can therefore be easy to implement, and powerful alternatives for solving engineering design problems.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In