Full Content is available to subscribers

Subscribe/Learn More  >

Simulation of Open Channel Turbulent Flow Over Bridge Decks and Formation of Scour Hole Beneath the Bridge Under Flooding Conditions

[+] Author Affiliations
Bishwadipa Adhikary, Pradip Majumdar, Milivoje Kostic

Northern Illinois University, DeKalb, IL

Steven A. Lottes

Argonne National Laboratory, West Chicago, IL

Paper No. IMECE2009-13258, pp. 741-752; 12 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


This study is focused on the simulation of open channel turbulent flow over flooded laboratory scale bridge decks and formation of scour holes under various flooding conditions. Solutions for turbulent flow field are based on Reynolds Averaged Navier-Stokes (RANS) equations and turbulence closure models using the STAR-CD commercial computational fluid dynamics (CFD) software. An iterative computational methodology is developed for predicting equilibrium scour profiles using the single-phase flow model with a moving boundary formulation. The methodology relies on an empirical correlation for critical bed shear stress that is used to characterize the condition for onset of sediment motion and an effective bed roughness that is a function of sediment particle size. The computational model and iterative methodology were stable and converged to an equilibrium scour hole shape and size that compares reasonably well with experiment using a constant critical shear stress value.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In