0

Full Content is available to subscribers

Subscribe/Learn More  >

An Acceleration Technique for the Computation of Participating Radiative Heat Transfer

[+] Author Affiliations
Sanjay R. Mathur, Jayathi Y. Murthy

Purdue University, West Lafayette, IN

Paper No. IMECE2009-12923, pp. 709-717; 9 pages
doi:10.1115/IMECE2009-12923
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

It is known that the finite volume and discrete ordinates methods for computing participating radiation are slow to converge when the optical thickness of the medium becomes large. This is a result of the sequential solution procedure usually employed to solve the directional intensities, which couples the ordinate directions and the energy equation loosely. Previously published acceleration techniques have sought to employ a governing equation for the angular-average of the radiation intensity to promote inter-directional coupling. These techniques have not always been successful, and even where successful, have been found to destroy the conservation properties of the radiative transfer equation. In this paper, we develop an algorithm called Multigrid Acceleration using Global Intensity Correction (MAGIC) which employs a multigrid solution of the average intensity and energy equations to significantly accelerate convergence, while ensuring that the conservative property of the radiative transfer equation is preserved. The method is shown to perform well for radiation heat transfer problems in absorbing, emitting and scattering media, both and without radiative equilibrium, and across a range of optical thicknesses.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In