0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Vapor-Liquid Two-Phase Flow in a Closed Loop Oscillating Heat Pipe

[+] Author Affiliations
Xiangdong Liu, Yingli Hao

Southeast University, Nanjing, Jiangsu, China

Paper No. IMECE2009-12038, pp. 609-617; 9 pages
doi:10.1115/IMECE2009-12038
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

A comprehensive mathematical model including the effects of vapor-liquid interface and surface tension was proposed to describe the vapor-liquid two-phase flow, heat and mass transfer and the phase change process in a closed loop oscillating heat pipe (CLOHP). The vapor-liquid two-phase flow in a typical CLOHP was numerically investigated using the proposed mathematical model and the VOF method. The comparisons between the computational and experimental results indicated that the proposed model could successfully simulate the initial distribution of working fluid, the complex flow patterns during different operation conditions, such as bubbly flow, slug flow, semi-annular/annular flow, back flow, and the flow pattern transitions in the CLOHP. The phenomenon that semi-annular/annular flow and slug flow formed in alternating vertical tubes at the initial stage of working fluid circulation was also simulated successfully. Those results were in good agreement with the experimental observations. The flow and heat transfer of a working fluid in two transition sections, and the effects of heating power on the interval flow patterns, were analyzed based on the numerical simulation. The results showed that the changes of temperature, pressure and flow pattern were obvious in the transition section between adiabatic section and condenser section, where the transition of heat transfer condition occurred. The violent boiling might occur in the evaporator section under the high heating power of 100 W and 120 W. The preliminary results indicated that the mathematical model proposed in present paper could effectively reveal the complex vapor-liquid two-phase flow in CLOHP, which established a basis for the further study of complex working mechanisms of CLOHP and effects of operation parameters.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In