0

Full Content is available to subscribers

Subscribe/Learn More  >

Robust Design Optimization of Ball Grid Array Packaging

[+] Author Affiliations
Jae Chang Kim, Joo-Ho Choi, Yeong K. Kim

Korea Aerospace University, Goyang, Gyeonggi, South Korea

Paper No. DETC2011-48858, pp. 165-171; 7 pages
doi:10.1115/DETC2011-48858
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 37th Design Automation Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5482-2
  • Copyright © 2011 by ASME

abstract

In this paper, comparisons of the design optimization of ball grid array packaging geometry based on the elastic and viscoelastic material properties are made. Six geometric dimensions of the packaging are chosen as input variables. Molding compound and substrate are modeled as elastic and viscoelastic, respectively. Viscoplastic finite element analyses are performed to calculate the strain energy densities (SED) of the eutectic solder balls. Robust design optimizations to minimize SED are carried out, which accounts for the variance of the parameters via Kriging dimension reduction method. Optimum solutions are compared with those by the Taguchi method. It is found that the effects of the packaging geometry on the solder ball reliability are significant, and the optimization results are different depending on the materials modeling.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In