Full Content is available to subscribers

Subscribe/Learn More  >

An RBF Interpolated Generalized Finite Difference Meshless Method for Compressible Turbulent Flows

[+] Author Affiliations
Kevin J. Erhart, Salvadore A. Gerace

Convergent Modeling, Inc., Orlando, FL

Eduardo A. Divo, Alain J. Kassab

University of Central Florida, Orlando, FL

Paper No. IMECE2009-11452, pp. 571-581; 11 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Computational Fluid Dynamics (CFD) is a topic that has been researched heavily over the past 50 years, especially since the accessibility to sufficient computational resources has greatly increased. However, it is precisely this increase in technology that has led to a lack of efficiency in many CFD developments, especially when it comes to the process of grid generation. While many researchers are currently focused on solutions to the grid generation problems of traditional CFD techniques, the majority of these approaches still suffer serious numerical difficulties due to the underlying CFD solution algorithms that are used. Therefore, the focus of this work is to demonstrate a novel approach to true CFD automation which is based on traditional Cartesian grid generation coupled with a Meshless flow solution algorithm. As Meshless method solutions require only an underlying nodal distribution, this approach works well even for complex flow geometries. And with the addition of a so-called shadow layer of body-fitted nodes, the stair-casing issues of typical Cartesian solvers are eliminated. This paper will describe the approach taken to automatically generate the Meshless nodal distribution, along with the details of an automatic local refinement process. Also, as the primary interest of automated CFD is for aerospace applications, this work includes the development of standard two-equation turbulence models for use in this Meshless based solver. Finally, results will be shown for the application of high-speed, compressible turbulent flows.

Copyright © 2009 by ASME
Topics: Turbulence



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In