Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Modeling of a Mini Rotor-Stator System

[+] Author Affiliations
Emre Dikmen, Peter van der Hoogt, André de Boer, Ronald Aarts, Ben Jonker

University of Twente, Enschede, The Netherlands

Paper No. IMECE2009-10849, pp. 527-532; 6 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


In this study the temperature increase and heat dissipation in the air gap of a cylindrical mini rotor stator system has been analyzed. A simple thermal model based on lumped parameter thermal networks has been developed. With this model the temperature dependent air properties for the fluid-rotor interaction models have been calculated. Next the complete system has also been modeled by using computational fluid dynamics (CFD) with Ansys-CFX and Ansys. The results have been compared and the capability of the thermal networks method to calculate the temperature of the air between the rotor and stator of a high speed micro rotor has been discussed.

Copyright © 2009 by ASME
Topics: Modeling , Rotors , Stators



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In