0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Microstructure on Pit-to-Crack Transition and Crack Growth in an X-52 Pipeline Steel in Near-Neutral pH Environment

[+] Author Affiliations
B. Fang

University of Alberta, Edmonton, Alberta, Canada; Chinese Academy of Sciences, Shenyang, China; Ross Energy Services Ltd., Calgary, Alberta, Canada

R. Eadie, W. Chen

University of Alberta, Edmonton, Alberta, Canada

M. Elboujdaini

Natural Resources Canada, Ottawa, Ontario, Canada

E.-H. Han

Chinese Academy of Sciences, Shenyang, China

Paper No. IPC2008-64112, pp. 215-225; 11 pages
doi:10.1115/IPC2008-64112
From:
  • 2008 7th International Pipeline Conference
  • 2008 7th International Pipeline Conference, Volume 2
  • Calgary, Alberta, Canada, September 29–October 3, 2008
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4858-6 | eISBN: 798-0-7918-3835-8
  • Copyright © 2008 by ASME and Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources

abstract

X-52 pipeline steel specimens that had been pitted using a passivation/immersion technique were cyclically loaded in a near-neutral pH solution sparged with 5% CO2 /balance N2 gas mixture at a peak normal stress of 109% of the yield strength (YS), a stress ratio, R, of 0.8, and a frequency of 0.0001 Hz. Blunt cracks were seen to have initiated from the corrosion pits. There were many more cracks on the radial transverse (R-T) surface than on the axial transverse (A-T) surface. On the R-T surface, there were a lot of non-metallic inclusions particularly at mid-wall in this steel and these resulted in the nucleation of large pits that were particularly prone to pit-to-blunt-crack transition. At higher peak normal stress, 109% of YS, compared to previous studies at a little lower stresses, there was more rapid crack formation on the R-T surface. In the end, the cracks along the large elongated inclusions penetrated into the steel samples and led to failure. The crack path was transgranular in nature and the fracture surface displayed quasi-cleavage features. Analysis revealed that the pit depth to width ratio for individual pits was a little higher than that for linked pits, however, the ratio of crack depth to crack mouth width was observed to be much larger than the ratio for the linked pits. Strong preferential dissolution was believed to be responsible for the pit nucleation from these non-metallic inclusions, with the plastically deformed regions at the pits acting as the anodic phases.

Copyright © 2008 by ASME and Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In