Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Modeling of Liquid Piston Gas Compression

[+] Author Affiliations
Cecil Piya, Indraneel Sircar, James D. Van de Ven, David J. Olinger

Worcester Polytechnic Institute, Worcester, MA

Paper No. IMECE2009-10621, pp. 507-517; 11 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Prior research has shown that the use of liquid-pistons in place of conventional solid pistons within gas compression technologies can significantly improve the efficiency of gas compression. The liquid-piston provides the prospect for a consistent and high rate of heat extraction from the compressed gas during system operation. Consequently, the input power requirements during each individual compression are lowered. To validate this concept, analytical studies of the thermal-fluids and heat transfer mechanisms during gas compression were performed. The analysis involved the development of a numerical model, using the finite-difference method, which simulated a single compression stroke and quantified the crucial parameters during compression. This model was utilized to obtain theoretical efficiency values and to recognize optimal system characteristics. The results obtained from the simulation indicated double-digit increase in efficiency with the introduction of the liquid-piston.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In