0

Full Content is available to subscribers

Subscribe/Learn More  >

Flow Investigation Through a 30° Turn Diffusing Duct in Subsonic Flow Regime

[+] Author Affiliations
Prasanta K. Sinha

Durgapur Institute of Advanced Technology & Management, Durgapur, WB, India

Biswajit Haldar, Amar N. Mullick

National Institute of Technology, Durgapur, WB, India

Bireswar Majumdar

Jadavpur University, Calcutta, WB, India

Paper No. IMECE2009-12456, pp. 251-258; 8 pages
doi:10.1115/IMECE2009-12456
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

Curved diffusers are an integral component of the gas turbine engines of high-speed aircraft. These facilitate effective operation of the combustor by reducing the total pressure loss. The performance characteristics of these diffusers depend on their geometry and the inlet conditions. In the present investigation the distribution of axial velocity, transverse velocity, mean velocity, static and total pressures are experimentally studied on a curved diffuser of 30° angle of turn with an area ratio of 1.27. The centreline length was chosen as three times of inlet diameter. The experimental results then were numerically validated with the help of Fluent, the commercial CFD software. The measurements of axial velocity, transverse velocity, mean velocity, static pressure and total pressure distribution were taken at Reynolds number 1.9 × 105 based on inlet diameter and mass average inlet velocity. The mean velocity and all the three components of mean velocity were measured with the help of a pre-calibrated five-hole pressure probe. The velocity distribution shows that the flow is symmetrical and uniform at the inlet and exit sections and high velocity cores are accumulated at the top concave surface due to the combined effect of velocity diffusion and centrifugal action. It also indicates the possible development of secondary motions between the concave and convex walls of the test diffuser. The mass average static pressure recovery and total pressure loss within the curved diffuser increases continuously from inlet to exit and they attained maximum values of 35% and 14% respectively. A comparison between the experimental and predicated results shows a good qualitative agreement between the two. Standard k-ε model in Fluent solver was chosen for validation. It has been observed that coefficient of pressure recovery Cpr for the computational investigation was obtained as 38% compared to the experimental investigation which was 35% and the coefficient of pressure loss is obtained as 13% in computation investigation compared to the 14% in experimental study, which indicates a very good qualitative matching.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In