Full Content is available to subscribers

Subscribe/Learn More  >

Large-Eddy Simulation of Turbulent Flow Through Small Gage Gas Appliance Orifices

[+] Author Affiliations
Emad Y. Tanbour

The University of Iowa, Iowa City, IA

Ramin K. Rahmani, Anahita Ayasoufi

The University of Toledo, Toledo, OH

Paper No. IMECE2009-11692, pp. 223-232; 10 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Small orifices are widely used in different industries including gas appliances. Although characteristics of orifices such as their coefficient of discharge have been subject of interest for the past several decades, most of the previous studies focus on relatively high Reynolds number flow through relatively large diameter orifices. Moreover, the majority of previous work has focused on incompressible flows. This study focuses on the flow of different compressible gaseous fluids inside small orifices ranging from 1.3 mm to 2.1 mm hydraulic diameters for flow Re numbers of ∼8000 to ∼26000. Large-Eddy Simulation for turbulent flow is employed to solve the second-order discrete equations for compressible and incompressible flows in gas appliance orifices to predict the flow characteristics for relatively low-Re compressible flows in orifices widely used in gas appliance industry. The impacts of fluid material, the orifice hydraulic diameter, and the orifice profile on the characteristics of orifice are studied.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In