Full Content is available to subscribers

Subscribe/Learn More  >

Drag Reduction by Culture Solutions of Dry Malted Rice

[+] Author Affiliations
Keizo Watanabe

Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan

Satoshi Ogata

Tokyo Metropolitan University, Hachioji, Tokyo, Japan

Paper No. IMECE2009-10421, pp. 75-79; 5 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Turbulent drag reduction by culture solutions of dry malted rice was investigated in a 2.00mm-inner-diameter pipe flow of length 50 diameters at Reynolds numbers from 500 to 8000. The drag reducing abilities of the solutions were tested by comparing drag reduction effectiveness at different concentrations and culture times in water. Comparisons between polysaccharide biopolymer solutions and culture solutions of dry malted rice revealed that the test solutions exhibited Type B drag reduction, which were roughly parallel to, but displaced upwards from, the Newtonian Prandtl-Kármán law. The maximum drag reduction ration was about 30% at a Reynolds number of 8,000. It is shown also that the onset point of drag reduction phenomena was Ref = 200.

Copyright © 2009 by ASME
Topics: Drag reduction



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In