Full Content is available to subscribers

Subscribe/Learn More  >

Model-Based Optimal H∞ Controller on the Stability of a 2-DoF Quadrotor

[+] Author Affiliations
Rafael C. Sampaio, Marcelo Becker, Adriano A. G. Siqueira, Ricardo Breganon, Fábio de Salvi, Eduardo M. Belo

University of São Paulo, São Carlos, SP, Brazil

Paper No. DETC2011-48447, pp. 955-962; 8 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 2011 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5480-8
  • Copyright © 2011 by ASME


In this work the synthesis of a MIMO (Multiple Input Multiple Output) robust optimal model-based H∞ controller is proposed. The whole process takes into account the dynamic equations of a 2-DoF quadrotor Mini Aerial Vehicle (MAV) attached to a steel stand. We consider the gamma-iteration algorithm to find the controller. Our analysis focuses on the control of roll and pitch axes, thereby neglecting the yaw axis control. As our goal is, a priori, to observe the behavior of the H∞ controller while it is controlling the four motors individually in order to stabilize our MAV, this set up provides us with the possibility of a very close overview of the aircraft. Indeed, it allows the easy insertion of disturbances in both axes (individually and simultaneously) and then closely observe the behavior of the platform. Besides, and most important at any laboratory environment, it is an extremely safe mode to run indoor tests, avoiding the quadrotor from causing harm to the crew if any technical problem occurs. The optimal H∞ robust controller presents a high capability of rejecting noises and disturbances. The controller can also suppress the uncertainties of our model. Besides presenting the dynamical model of our MAV, we present the experimental results of both roll and pitch control using the dSpace™ 1103 high performance controller board to embed the designed H∞ MIMO controller.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In