Full Content is available to subscribers

Subscribe/Learn More  >

Wheeled, Kinematically Redundant Locomotion System for Mobility-Oriented Research and Experimentation

[+] Author Affiliations
Patrick Labenda, Marc Neumann, Tim Sadek

Ruhr-University Bochum, Bochum, Germany

Paper No. DETC2011-47194, pp. 575-582; 8 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 2011 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5480-8
  • Copyright © 2011 by ASME


Mobile robots for inspection and surveillance of hard-to-reach and hazardous areas e.g. resulting from a building collapse in the course of a natural or man-made catastrophe have to possess enhanced rough terrain mobility capabilities. First, they must be able to navigate through a given environment and to avoid insurmountable obstacles. Second, they must have the ability to traverse different forms of ground without getting immobilized by a loss of traction. Third, they must be able to negotiate a wide spectrum of obstacles including e.g. wide gaps and high steps. These abilities can be described as a mobile robots performance indices “maneuverability”, “trafficability” and “terrainability”. As a consequence, mobile robot concepts for disaster control and search-and-rescue tasks always have to be developed and evaluated with regard to these performance indices. In principle, considerable potentials with regard to mobility in unstructured and rough environments offer kinematically redundant locomotion systems equipped with powered wheels or tracks which are inspired by their biological archetype snake. These potentials are based on the systems’ snake-like; modular design as well as their given kinematic redundancy. Due to their slender, modular and flexible design the systems are basically able to travel and maneuver through noticeable narrow passes and tunnels. Further on, their kinematic redundancy can be used for a purposeful posture and terrain adaptation to safeguard traction and the system’s trafficability, respectively. Finally, the systems’ modular and articulated design, both, can be used to achieve an outstanding terrainability and to be able to negotiate remarkable obstacles. The described and expected potentials of kinematically redundant locomotion systems have to be investigated in detail as well as evaluated in practice. To be able to do so, a demonstrator has been developed and implemented for intense mobility-oriented research and experimentation. The mobile robot and first experimental results are described in the paper at hand. The system stands out especially due to an innovative sensory for slip and contact force detection.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In