Full Content is available to subscribers

Subscribe/Learn More  >

MELCOR Code Validation on HE-FUS3 Loop

[+] Author Affiliations
Laurent Sallus, Walter Van Hove

Tractebel Engineering, Brussels, Belgium

Paper No. HTR2008-58258, pp. 391-404; 14 pages
  • Fourth International Topical Meeting on High Temperature Reactor Technology
  • Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 2
  • Washington, DC, USA, September 28–October 1, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4855-5 | eISBN: 978-0-7918-3834-1
  • Copyright © 2008 by ASME


Since the last decade, Tractebel Engineering has been involved in several consecutive projects in the field of High Temperature Gas Reactor (HTGR). The objectives of the present project called RAPHAEL (www.raphael-project.org ) is to provide R&D results in order to consolidate available data on generic V/HTR technologies and to develop innovative solutions to further contribute to the improvement of HTR performances. One of the objectives of the RAPHAEL Sub-project Safety is to qualify tools for performing safety analyses and supporting the safety approach and demonstration. One of the work packages concerns the validation of the existing thermal-hydraulic system codes capabilities needed to perform transient analysis in V/HTR. This validation is carried out by benchmarking against experimental data and by comparing simulation results given by several codes. The current paper presents the work performed at Tractebel Engineering on the simulation of the HE-FUS3 experimental loop — ENEA facility, Brasimone (Italy) — with the MELCOR v.1.8.6 code. The HE-FUS3 loop contains a wide range of components characteristic of a V/HTR like compressor, pipes, diffusers, valves, heaters and heat exchangers. Even if the loop characteristics/configuration is not prototypical of a V/HTR design, the loop is useful to assess the objectives identified by the Project, i.e. helium operating fluid, design pressure and temperature set respectively at 10.5 MPa and 530 °C. The experimental data of the HE-FUS3 loop made available for the benchmark are a set of steady state tests for the thermal-hydraulic characterization of the loop and two transient tests — Loss Of Flow Accidents (LOFA). Moreover, to assess the characteristics of the compressor, data have also been provided from a compressor test campaign. From the code-to-experiment comparison the ability of MELCOR v.1.8.6 to reproduce the experimental results is judged.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In