0

Full Content is available to subscribers

Subscribe/Learn More  >

Identifying Fractional Viscoelastic Models Based on Surface Wave Motion

[+] Author Affiliations
Marco Iannitto

University of Illinois at Chicago, Chicago, IL; Politecnico de Torino, Turin, Italy

Thomas J. Royston, Richard L. Magin

University of Illinois at Chicago, Chicago, IL

Paper No. DETC2011-47769, pp. 267-274; 8 pages
doi:10.1115/DETC2011-47769
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 2011 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5480-8
  • Copyright © 2011 by ASME

abstract

In previous studies of the second author mechanical wave motion on a viscoelastic material representative of biological tissue was analyzed. Compression, shear and surface wave motion in and on a viscoelastic halfspace excited by surface and subsurface sources were considered. It was shown that a fractional order Voigt model, in which the damping component, dependent on the first derivative of time, is replaced with a fractional element dependent on a derivative of time of fractional order between 0 and 1, resulted in closer agreement with experiment as compared with the conventional (integer order) models of Voigt and Zener. In the present study different materials and a wider range of viscoelastic models are considered. An algorithm to evaluate the frequency-dependent shear moduli of viscoelastic materials measuring the propagation of Rayleigh waves on the surface of the media is presented and viscoelastic models (both of integer and fractional order) are compared to experimental results. It is shown that, in the frequency range of interest (100–600 Hz), the use of the fractional order assumption improves the match of theory to experiment.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In