Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Oscillations in Fractional Order LTI Systems

[+] Author Affiliations
Milad Siami, Mohammad Saleh Tavazoei

Sharif University of Technology, Tehran, Iran

Paper No. DETC2011-47699, pp. 235-240; 6 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 2011 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5480-8
  • Copyright © 2011 by ASME


This paper is devoted to analysis of undamped oscillations generated by fractional order linear time invariant (LTI) systems. At first, the trajectories of marginally stable commensurate order systems are investigated. It is verified that we can not use the time-independent phase flow concept for this kind of systems. Also, the differences with the integer order case are highlighted. Then, it is shown that we can determine the Q-norm of the limit sets of a trajectory for these systems based on the Q-norm of the initial condition. Some numerical examples are brought to confirm the achievements of the paper.

Copyright © 2011 by ASME
Topics: Oscillations



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In