0

Full Content is available to subscribers

Subscribe/Learn More  >

The Solution of Linear Fractional Differential Equations Using the Fractional Meta-Trigonometric Functions

[+] Author Affiliations
Carl F. Lorenzo

NASA Glenn Research Center, Cleveland, OH

Rachid Malti

Bordeaux University, Talence, France

Tom T. Hartley

University of Akron, Akron, OH

Paper No. DETC2011-47395, pp. 155-161; 7 pages
doi:10.1115/DETC2011-47395
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 2011 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5480-8
  • Copyright © 2011 by ASME

abstract

A new method for the solution of linear constant coefficient fractional differential equations of any commensurate order based on the Laplace transforms of the fractional meta-trigonometric functions and the R-function is presented. The new method simplifies the solution of such equations. A simplifying characterization that reduces the number of parameters in the fractional meta-trigonometric functions is introduced.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In