0

Full Content is available to subscribers

Subscribe/Learn More  >

Advanced High Temperature Gas-Cooled Reactor Systems

[+] Author Affiliations
Yasuyoshi Kato

Tokyo Institute of Technology, Tokyo, Japan

Paper No. HTR2008-58324, pp. 793-800; 8 pages
doi:10.1115/HTR2008-58324
From:
  • Fourth International Topical Meeting on High Temperature Reactor Technology
  • Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 1
  • Washington, DC, USA, September 28–October 1, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4854-8 | eISBN: 978-0-7918-3834-1
  • Copyright © 2008 by ASME

abstract

Three systems have been proposed for advanced high temperature gas-cooled reactors (HTGRs): a supercritical carbon dioxide (S-CO2 ) gas turbine power conversion system; a new M icroC hannel H eat E xchanger (MCHE); and a once-through-then-out (OTTO) refueling scheme with burnable poison (BP) loading. An S-CO2 gas turbine cycle attains higher cycle efficiency than a He gas turbine cycle due to reduced compression work around the critical point of CO2 . Considering temperature lowering at the turbine inlet by 30°C through the intermediate heat exchange, the S-CO2 indirect cycle achieves efficiency of 53.8% at turbine inlet temperature of 820°C and turbine inlet pressure of 20 MPa. This cycle efficiency value is higher by 4.5% than that (49.3%) of a He direct cycle at turbine inlet temperature of 850°C and 7 MPa. A new MCHE has been proposed as intermediate heat exchangers between the primary cooling He loop and the secondary S-CO2 gas turbine power conversion system; and recuperators of the S-CO2 gas turbine power conversion system. This MCHE has discontinuous “S”-shape fins providing flow channels with near sine curves. Its pressure drop is one-sixth reference to the conventional MCHE with zigzag flow channel configuration while the same high heat transfer performance inherits. The pressure drop reduction is ascribed to suppression of recirculation flows and eddies that appears around bend corners of zigzag flow channels in the conventional MCHE. An optimal BP loading in an OTTO refueling scheme eliminates the drawback of its excessively high axial power peaking factor, reducing the power peaking factor from 4.44 to about 1.7; and inheriting advantages over the multi-pass scheme because of the lack of fuel handling and integrity checking systems; and reloading. Because of the power peaking factor reduction, the maximum fuel temperatures are lower than the maximum permissible values of 1250°C for normal operation and 1600°C during a depressurization accident.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In