Full Content is available to subscribers

Subscribe/Learn More  >

DVS Scheduling for Reducing Both Dynamic and Leakage Energy for (M,K)-Firm Real-Time Systems

[+] Author Affiliations
Linwei Niu

California State University, Bakersfield, Bakersfield, CA

Yuanchang Xie

South Carolina State University, Orangeburg, SC

Paper No. DETC2011-48981, pp. 65-74; 10 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 2011 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5480-8
  • Copyright © 2011 by ASME


While the dynamic voltage scaling (DVS) techniques are efficient in reducing the dynamic energy consumption for the processor, varying voltage alone becomes less effective for the overall power reduction as the leakage power is growing rapidly, i.e., five times per technical generation as predicted. On the other hand, Quality of Service (QoS) is also a primary concern in the development of today’s pervasive computing systems. In this paper, we study the problem of minimizing the overall energy consumption for soft real-time systems while ensuring the QoS-guarantee. In our research, the QoS requirements are deterministically quantified with the (m,k)-constraints, which require that at least m out of any k consecutive jobs of a task meet their deadlines. Two approaches are proposed in this paper. One statically determines the mandatory jobs that have to meet their deadlines in order to satisfy the (m,k)-constraints, and the other one does so dynamically. Moreover, we present efficient scheduling techniques to reduce the overall energy by procrastinating the execution of mandatory jobs and thus to merge the idle intervals. The simulation results demonstrate that our proposed techniques significantly outperformed previous research in both overall and idle energy reduction while providing the (m,k)-guarantee.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In