Full Content is available to subscribers

Subscribe/Learn More  >

A Fractal Approach for Modeling SOFC Electrode Mass Transport

[+] Author Affiliations
George J. Nelson, William Wepfer

Georgia Institute of Technology, Atlanta, GA

Comas Haynes

Georgia Tech Center for Innovative Fuel Cell and Battery Technologies, Atlanta, GA

Paper No. IMECE2009-12870, pp. 695-703; 9 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 6: Emerging Technologies: Alternative Energy Systems; Energy Systems: Analysis, Thermodynamics and Sustainability
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4379-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Fractal modeling approaches are common in the study of porous media and may be applied to describe pore surface morphology and network topology within a porous medium. Fractal structures can serve as templates for the pore structure and allow for the more detailed examination of diffusion phenomena within pore structures. In the present work a fractal pore morphology model is applied toward modeling diffusion within the electrochemically active region of an SOFC electrode. The porous electrode is separated into bulk and electrochemically active regions. Within the bulk electrode a one-dimensional model is applied based on the dusty-gas formalism assuming volume average microstructural parameters. The electrochemically active region is modeled using a two-dimensional finite element model based on a Koch pore cross-section as a fractal template. This fractal model is compared to a one-dimensional transport model applying the common assumption of a planar reaction zone. Performance variations that may exist for electrodes with the same average bulk properties are investigated in initial studies. These studies allow for exploration of the merits of fractal approaches in modeling diffusive transport within porous SOFC electrodes.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In