0

Full Content is available to subscribers

Subscribe/Learn More  >

Combining 3D Simulation Technology With Object-Oriented Databases: A Database Oriented Approach to Virtual Reality Systems

[+] Author Affiliations
Martin Hoppen, Juergen Rossmann, Michael Schluse, Ralf Waspe, Malte Rast

RWTH Aachen University, Aachen, Germany

Paper No. DETC2011-48230, pp. 1545-1554; 10 pages
doi:10.1115/DETC2011-48230
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Computers and Information in Engineering Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5479-2
  • Copyright © 2011 by ASME

abstract

Using object-oriented databases as the primary data source in VR applications has a variety of advantages, but requires the development of new techniques concerning data modeling, data handling and data transfer from a Virtual Reality system’s point of view. The many advantages are outlined in the first part of this paper. We first introduce versioning and collaboration techniques as our main motivation. These can also be used in the traditional file based approach, but are much more powerful when realized with a database on an object and attribute level. Using an object-oriented approach to data modeling, objects of the real world can be modeled more intuitively by defining appropriate classes with their relevant attributes. Furthermore, databases can function as central communication hubs for consistent multi user interaction. Besides, the use of databases with open interface standards allows to easily cooperate with other applications such as modeling tools and other data generators. The second part of this paper focuses on our approach to seamlessly integrate such databases in Virtual Reality systems. For this we developed an object-oriented internal graph database and linked it to object-oriented external databases for central storage and collaboration. Object classes defined by XML data schemata allow to easily integrate new data models in VR applications at run-time. A fully transparent database layer in the simulation system makes it easy to interchange the external database. We present the basic structure of our simulation graph database, as well as the mechanisms which are used to transparently map data and meta-data from the external database to the simulation database. To show the validity and flexibility of our approach selected applications realized with our simulation system so far e. g. applications based on geoinformation databases such as forest inventory systems and city models, applications in the field of distributed control and simulation of assembly lines or database-driven virtual testbeds applications for automatic map generation in planetary landing missions are introduced.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In