0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Coupling Process Heat Exchanger Between a VHTR and a Sulfur-Iodine Hydrogen Production System

[+] Author Affiliations
Yong Wan Kim, Jae Won Park, Won Jae Lee, Jonghwa Chang

Korea Atomic Energy Research Institute, Daejeon, South Korea

Paper No. HTR2008-58071, pp. 611-616; 6 pages
doi:10.1115/HTR2008-58071
From:
  • Fourth International Topical Meeting on High Temperature Reactor Technology
  • Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 1
  • Washington, DC, USA, September 28–October 1, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4854-8 | eISBN: 978-0-7918-3834-1
  • Copyright © 2008 by ASME

abstract

A heat exchanger to transfer the heat generated from a nuclear reactor to a sulfur-iodine hydrogen production system has been developed. This heat exchanger operates in the extreme environments of a high corrosion, a high temperature, and a high differential pressure. A coating and ion beam mixing surface modification technology are applied to the process heat exchanger in order to enhance its corrosion resistance without loosing the manufacturability of the metal. A Ni-based super alloy is coated with a silicon carbide to enhance its corrosion resistance. The development of heat exchanger including shape design, thermal sizing, ion beam mixing process, stress analysis, and the manufacturing of small scale mock-up heat exchanger are discussed in this paper. The heat exchanger is a hybrid type to meet the design pressure requirements between a nuclear system and a hydrogen production system. A thermal sizing procedure for the process heat exchanger by considering the heat of sulfuric acid gas decomposition is developed. A finite element stress analysis is carried out by using the temperature profile obtained from the thermal sizing calculation. The finite element models were studied to simulate the stress state of the heat exchanger. Two-dimensional analysis was performed at the entrance region of the heat exchanger. A three-dimensional analysis for a single effective heat transfer channel was performed to investigate three-dimensional stress state. Stress analysis results have shown that the developed heat exchanger can withstand the required pressure difference at the elevated temperature condition. A small size heat exchanger was fabricated in order to test it in a high temperature nitrogen-gas loop. The fabrication of the heat exchanger includes a machining of the flow path, a coating and ion beam mixing, and a diffusion bonding of the heat transfer plate.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In