Full Content is available to subscribers

Subscribe/Learn More  >

Examination of Water Diffusion Process Within a Low Temperature Polymer Fuel Cell Membrane

[+] Author Affiliations
Timothy D. Myles, Kyle N. Grew, Aldo A. Peracchio, Wilson K. S. Chiu

University of Connecticut, Storrs, CT

Paper No. IMECE2009-11341, pp. 651-656; 6 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 6: Emerging Technologies: Alternative Energy Systems; Energy Systems: Analysis, Thermodynamics and Sustainability
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4379-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Water transport in fuel cells is of interest since the hydration state of the electrolyte is strong related to its conductivity. This study focuses on one part of water transport in fuel cell membranes, namely diffusion. In order to study diffusion processes in a fuel cell membrane a computer model has been developed. It is validated using information reported for the electrolyte membrane material Nafion. When the model is compared to experimental data from the literature a maximum error of 24.7% is observed. Two effects in addition to molecular diffusion have been studied; interfacial absorption and desorption of water at the membrane surface, and convective mass transfer. The effect of convective mass transfer is shown to be negligible while the effects of absorption and desorption are significant. By completing this validation it allows for the additional studies in the future of diffusion in other types of proton exchange membranes and the improvement of fuel cell performance.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In