Full Content is available to subscribers

Subscribe/Learn More  >

Simulation and Analysis of Helium Circulator Trip ATWS Test at Full Power on the HTR-10

[+] Author Affiliations
Yujie Dong, Fubing Chen, Zuoyi Zhang, Shouyin Hu, Lei Shi, Yanhua Zheng, Yangping Zhou

Tsinghua University, Beijing, China

Paper No. HTR2008-58322, pp. 579-590; 12 pages
  • Fourth International Topical Meeting on High Temperature Reactor Technology
  • Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 1
  • Washington, DC, USA, September 28–October 1, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4854-8 | eISBN: 978-0-7918-3834-1
  • Copyright © 2008 by ASME


Safety demonstration tests on the 10 MW High Temperature Gas-cooled Reactor-Test Module (HTR-10) were conducted to verify the inherent safety characteristics of modular High Temperature Gas-cooled Reactors (HTGRs) as well as to obtain the reactor core and primary cooling system transient data for validation of HTGR safety analysis models and codes. As one of these safety demonstration tests, a simulated anticipated transient without scram (ATWS) test called loss of forced cooling by tripping the helium circulator without reactor scram was carried out at 100% rated power level in July, 2005. This paper simulates the reactor transient behaviour during the test by using the THERMIX code system. The reactor power transition and a comparison with the test result are presented. Owing to the negative temperature coefficient of reactivity, the reactor undergoes a self-shutdown after the stop of the helium circulator and keeps subcritical till the end of the test. Due to the loss of forced cooling, the residual heat is slowly transferred from the core to the Reactor Cavity Cooling System (RCCS) by conduction, radiation and natural convection. The thermal response of this heat removal process is investigated. The calculated and test temperature transients of the measuring points in the reactor internals are given and the differences are preliminarily discussed. With respect to the safety features of the HTR-10, it is of most importance that the maximum fuel center temperature is always lower than 1230 °C which is the limited value at the first phase of the HTR-10 project. The simulation and test results show that the HTR-10 has the built-in passive safety features, and the THERMIX code system is applicable and reasonable for simulating and analyzing the helium circulator trip ATWS test.

Copyright © 2008 by ASME
Topics: Simulation , Helium



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In