Full Content is available to subscribers

Subscribe/Learn More  >

Performance of Single Electrode-Supported Cells Operating in the Electrolysis Mode

[+] Author Affiliations
J. E. O’Brien, G. K. Housley

Idaho National Laboratory, Idaho Falls, ID

D. G. Milobar

University of Arizona, Tucson, AZ

Nathalie Petigny

Saint-Gobain, Cavaillon, France

Paper No. IMECE2009-11683, pp. 617-625; 9 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 6: Emerging Technologies: Alternative Energy Systems; Energy Systems: Analysis, Thermodynamics and Sustainability
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4379-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900°C. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (∼10 μm thick), nickel-YSZ steam/hydrogen electrodes (∼1400 μm thick), and manganite (LSM) air-side electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1–0.6), gas flow rates, and current densities (0 to 0.6 A/cm2 ). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In