0

Full Content is available to subscribers

Subscribe/Learn More  >

A Knowledge Discovery in Databases (KDD) Approach for Extracting Causes of Iterations in Engineering Change Orders

[+] Author Affiliations
Fatos Elezi, Armin Sharafi, Alexander Mirson, Petra Wolf, Helmut Krcmar, Udo Lindemann

Technische Universität München, Munich, Germany

Paper No. DETC2011-48335, pp. 1401-1410; 10 pages
doi:10.1115/DETC2011-48335
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Computers and Information in Engineering Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5479-2
  • Copyright © 2011 by ASME

abstract

This paper describes an implementation of a Knowledge Discovery in Databases (KDD) process for extracting the causes of iterations in Engineering Change Orders (ECOs). A data set of approximately 53,000 historical Engineering Change Orders (ECOs) was used for this purpose. Initially, the impact of iterations in ECO lead time and uncertainty is assessed. Subsequently, a semi-automatic text-mining process is employed to classify the causes of iterations. As a result, cost and technical categories of causes were identified as the main reasons for the occurrence of iterations. The study concludes that applying KDD in historic ECO data can help in identifying the causes of iterations of ECO which subsequently can provide a framework for companies to reduce these iterations. In addition, the case represents an example of benefits that can be achieved with the application of KDD in engineering change management.

Copyright © 2011 by ASME
Topics: Databases

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In