0

Full Content is available to subscribers

Subscribe/Learn More  >

Systematic Qualification of the Coupled Neutron Transport and Thermal-Hydraulics Code DORT-TD/THERMIX

[+] Author Affiliations
Bismark Tyobeka

International Atomic Energy Agency, Vienna, Austria

Andreas Pautz

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Garching, München, Germany

Kostadin Ivanov

Pennsylvania State University, State College, PA

Paper No. HTR2008-58137, pp. 511-520; 10 pages
doi:10.1115/HTR2008-58137
From:
  • Fourth International Topical Meeting on High Temperature Reactor Technology
  • Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 1
  • Washington, DC, USA, September 28–October 1, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4854-8 | eISBN: 978-0-7918-3834-1
  • Copyright © 2008 by ASME

abstract

In order to present credible results in nuclear design and safety analysis, computer codes must adhere to stringent qualification procedures imposed by nuclear licensing authorities. Such procedures form the basis for a quality assured verification and validation process. This is particularly true for advanced nuclear systems of Generation IV type, where little licensing experience exists as well as little or no plant data is available. Qualification of nuclear design and analysis codes can be achieved in various ways, namely: comparison of results from a code with results from another code i.e. code to code benchmarking; comparison of results from a given code with experimental results, i.e. code to experiment benchmarking; comparison of results from a given code with operational plant data; and finally, comparison of the results of a given code with known analytical solutions. In this paper, a systematic qualification of the coupled neutron transport and thermal hydraulics code DORT-TD/THERMIX is presented. As part of developing this coupled code to the level where it can be used as an independent tool by both designers of pebble-bed High-Temperature Gas-cooled Reactors (HTGRs) and regulators, an effort has been made to verify the coupling scheme as well as the validity of application for this code package. At these initial stages a code to code comparison has been adopted as the qualification method of choice. This is done for both steady-state and transient benchmark problems, ranging from simplified to detailed models. As shown in the results section, all benchmarks have been successfully recalculated and generally show good to very good agreement with the “reference” solutions.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In