0

Full Content is available to subscribers

Subscribe/Learn More  >

Should Engineering Thermodynamics Include a Simplified Treatment of Its Underlying Molecular Basis?

[+] Author Affiliations
W. John Dartnall, John Reizes, Geoff Anstis

University of Technology, Sydney, Sydney, NSW, Australia

Paper No. IMECE2009-10933, pp. 549-558; 10 pages
doi:10.1115/IMECE2009-10933
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 6: Emerging Technologies: Alternative Energy Systems; Energy Systems: Analysis, Thermodynamics and Sustainability
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4379-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

Engineering Thermodynamics is commonly treated at undergraduate level as “classical thermodynamics and its applications”. Recent publications, using one dimensional simulations employing hard spheres have proposed ways to obtain the laws of thermodynamics. These models help to explain the state laws, the limitation of the Carnot cycle relationship as well as difficult concepts like entropy. The models, although deterministic, are able to demonstrate the probabilistic behaviour, normally explained by the mathematically sophisticated derivations of Statistical Mechanics. Is it time to include a simplified, mechanistic explanation of Engineering Thermodynamics by deriving it from its molecular basis?

Copyright © 2009 by ASME
Topics: Thermodynamics

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In