Full Content is available to subscribers

Subscribe/Learn More  >

Simulations of Air and Water Ingress Transients for the Pebble Bed Modular Reactor (PBMR) by Means of the TINTE Code

[+] Author Affiliations
Ugur Emre Sikik

Pebble Bed Modular Reactor (Pty.) Ltd., Centurion, Gauteng, South Africa

Paper No. HTR2008-58104, pp. 431-438; 8 pages
  • Fourth International Topical Meeting on High Temperature Reactor Technology
  • Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 1
  • Washington, DC, USA, September 28–October 1, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4854-8 | eISBN: 978-0-7918-3834-1
  • Copyright © 2008 by ASME


In this study several air and water ingress scenarios for the PBMR [1] were simulated by means of the dynamic reactor code TINTE (TI me-dependent N eutronics and TE mperatures) [2]. The Power Conversion Unit (PCU) and other sub-systems cannot be modelled with the TINTE code and therefore air ingress rates were obtained from Computational Fluid Dynamics (CFD) analysis performed by utilizing the FLUENT code [3]. The use of the TINTE code was previously validated with simulations of the NACOK corrosion experiments [4], [5], [6]. The validations were performed at Forschungszentrum Juelich, however the results are not yet published. The rates of chemical reactions between graphite and gases like O2 , CO2 , H2 O and H2 are negligible below 400°C. Air and water ingress into the PBMR core at high temperatures can result in corrosion of the PBMR fuel spheres and a possible increase in the fission product release rate. The air ingress scenarios included in this study are; a break in the core outlet pipe at the turbine inlet location, which results in air ingress from the outlet plenum, and a break in a pipe that is connected to the top of the Reactor Pressure Vessel (RPV), which results in air ingress from top of the core. For both transients it is assumed that a Depressurized Loss of Forced Cooling (DLOFC) event takes place prior to the air ingress. The DLOFC leads to high fuel and reflector temperatures that allow higher oxidation rates. The results show that the oxidation of graphite structures in the core is more severe in the case of the outlet pipe break transient. A break in the Core Conditioning System (CCS) heat exchanger circuit during a maintenance mode or following a reactor trip could result in water ingress of up to 1000 kg into the core (the primary system is depressurized at this stage). During the water ingress the CCS continuously cools down the core. Due to the low water ingress rate and lower fuel temperatures, the water ingress transient is not as severe as the air ingress transients.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In