Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Exergetic Analysis of Chemical Processes

[+] Author Affiliations
A. Boyano, G. Tsatsaronis, T. Morosuk

Technical University of Berlin, Berlin, Germany

A. M. Blanco-Marigorta

University of Las Palmas de Gran Canária, Las Palmas de Gran Canária, Spain

Paper No. IMECE2009-10463, pp. 533-538; 6 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 6: Emerging Technologies: Alternative Energy Systems; Energy Systems: Analysis, Thermodynamics and Sustainability
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4379-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


In this paper, a steam methane reforming (SMR) process for the production of hydrogen is studied. The process is based on two chemical reactions (reforming and water-gas-shift reaction). For each component but especially focusing on the chemical reactors, the avoidable part of the exergy destruction is estimated. The assumptions required for these calculations are discussed in detail and represent the main contribution of this work to the development of exergy-based methods for the analysis of chemical processes. In an advanced exergy analysis, the exergy destruction within a component is split into avoidable/unavoidable parts. This splitting improves understanding of the sources of thermodynamic inefficiencies and facilitates a subsequent optimization of the overall process. The overall SMR process is characterized by high energetic and exergetic efficiencies. However, the majority of the exergy destruction is caused by the irreversibility of chemical reactions and heat transfer. Results of this paper suggest options for improving the efficiency of the overall process.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In