Full Content is available to subscribers

Subscribe/Learn More  >

Regenerative Braking Potential and Energy Simulations for a Plug-In Hybrid Electric Vehicle Under Real Driving Conditions

[+] Author Affiliations
L. A. S. B. Martins, J. M. O. Brito, A. M. D. Rocha, J. J. G. Martins

Universidade do Minho, Guimarães, Portugal

Paper No. IMECE2009-13077, pp. 525-532; 8 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 6: Emerging Technologies: Alternative Energy Systems; Energy Systems: Analysis, Thermodynamics and Sustainability
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4379-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


There are several possible configurations and technologies for the powertrains of electric and hybrid vehicles, but most of them will include advanced energy storage systems comprising batteries and ultra-capacitors. Thus, it will be of capital importance to evaluate the power and energy involved in braking and the fraction that has the possibility of being regenerated. The Series type Plug-in Hybrid Electric Vehicle (S-PHEV), with electric traction and a small Internal Combustion Engine ICE) powering a generator, is likely to become a configuration winner. The first part of this work describes the model used for the quantification of the energy flows of a vehicle, following a particular route. Normalised driving-cycles used in Europe and USA and real routes and traffic conditions were tested. The results show that, in severe urban driving-cycles, the braking energy can represent more than 70% of the required useful motor-energy. This figure is reduced to 40% in suburban routes and to a much lower 18% on motorway conditions. The second part of the work consists on the integration of the main energy components of an S-PHEV into the mathematical model. Their performance and capacity characteristics are described and some simulation results presented. In the case of suburban driving, 90% of the electrical motor-energy is supplied by the battery and ultra-capacitors and 10% by the auxiliary ICE generator, while on motorway these we got 65% and 35%, respectively. The simulations also indicate an electric consumption of 120 W.h/km for a small 1 ton car on a suburban route. This value increases by 11% in the absence of ultra-capacitors and a further 28% without regenerative braking.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In