0

Full Content is available to subscribers

Subscribe/Learn More  >

Fission-Product Behaviour During Irradiation of TRISO-Coated Particles in the HFREU1bis Experiment

[+] Author Affiliations
Sander de Groot, Klaas Bakker

Nuclear Research and Consultancy Group (NRG), Petten, The Netherlands

Roland Dubourg, Martin Kissane, Marc Barrachin

Institut de Radioprotection et de Sûreté Nucléaire, Saint Paul lez Durance, France

Paper No. HTR2008-58125, pp. 307-316; 10 pages
doi:10.1115/HTR2008-58125
From:
  • Fourth International Topical Meeting on High Temperature Reactor Technology
  • Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 1
  • Washington, DC, USA, September 28–October 1, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4854-8 | eISBN: 978-0-7918-3834-1
  • Copyright © 2008 by ASME

abstract

The irradiation experiment HFR-EU1bis, coordinated by the European Joint Research Centre – Institute for Energy, was performed in the High Flux Reator (HFR) at Petten to test five spherical HTR fuel pebbles of former German production with TRISO coated particles in conditions beyond the specifications of current HTR reactor designs (central temperature of 1250°C). In this paper, the behaviour of the fission products (FPs) and kernel micro-structure evolution during the test are investigated. While FP behaviour is a key issue for potential source term evaluation it also determines the evolution of the oxygen potential in the oxide kernel which in turn is important for formation of carbon oxides (amoeba effect and pressurization). Fission-gas release from the kernel can induce additional mechanical loading and finally some FPs (Ag, Cs, Sr) might alter the mechanical integrity of the coatings. This study is based on postirradiation examinations (ceramography + EPMA) performed both on UO2 kernels and on coatings. Significant evolutions of the kernel as a function of temperature are shown (grain structure, porosity, size of metallic inclusions). The quality of the ceramography results allows characteristics of the intergranular bubbles in the kernel (and estimation of swelling) to be determined. Remarkable results considering FP release from the kernel have been observed and will be presented. Examples are the significant release of Cs out of the kernel as well as Pd, whereas Zr remains trapped. Mo and Ru are mainly incorporated in metallic precipitates. These observations are interpreted and mechanisms for FP and micro-structural evolutions are proposed. These results are coupled to the results of calculations performed with the mechanistic code MFPR (Module for Fission Product Release) and the thermodynamic database MEPHISTA (Multiphase Equilibria in Fuels via Standard Thermodynamic Analysis). The effect of high flux rate and high temperature on fission gas behaviour, grain size evolution and kernel swelling are discussed. In addition, solid-FP behaviour (Cs, Mo, Zr, Ba, Sr) is discussed in connection with the evolution of kernel oxygen potential and evolution of the pressure of carbon oxides. The paper intends to be exemplary on how the combination of post-irradiation examination results and fuel modelling increases fundamentally the understanding of HTR fuel behaviour.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In