0

Full Content is available to subscribers

Subscribe/Learn More  >

Affect Prediction for Emotional Design: A Comparison Study of Physiological and Subjective Self-Report Data

[+] Author Affiliations
Feng Zhou, Jianxin Roger Jiao

Georgia Institute of Technology, Atlanta, GA

Xingda Qu, Martin G. Helander

Nanyang Technological University, Singapore

Paper No. DETC2011-48914, pp. 917-925; 9 pages
doi:10.1115/DETC2011-48914
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Computers and Information in Engineering Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5479-2
  • Copyright © 2011 by ASME

abstract

Emotional design has attracted much attention due to its important role in the development of products and services towards high value-added user satisfaction and performance enhancement. However, how to predict users’ affective states in real time and without having to interrupt the user is critical to emotional design. This study compared affect prediction between using physiological measures and using self-report subjective measures. Specifically, an experiment was designed to elicit seven different affective states using standardized affective pictures as visual stimuli. Each stimulus was presented for 6 seconds and multiple physiological signals were measured, including facial electromyography, respiration rate, electroencephalography, and skin conductance response. Subjective ratings were also recorded immediately after stimulus presentation. Three data mining methods (i.e., decision rules, k-NN, and decomposition tree) based on the rough set theory were applied to construct prediction models from physiological measures and subjective measures, respectively. We obtained the highest mean prediction rate at 73.69% for physiological models and 52.43% for subjective models, respectively, across the 7 affective states. It demonstrates that physiological data are able to predict better result than subjective self-report data did and that physiological computing offers great potential for the development of emotional design.

Copyright © 2011 by ASME
Topics: Design , Physiology

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In