Full Content is available to subscribers

Subscribe/Learn More  >

A Programming Language Approach to Parametric CAD Data Exchange

[+] Author Affiliations
John Altidor, Jack Wileden, Jeffrey McPherson, Ian Grosse, Sundar Krishnamurty

University of Massachusetts, Amherst, MA

Felicia Cordeiro, Audrey Lee-St. John

Mount Holyoke College, South Hadley, MA

Paper No. DETC2011-48530, pp. 779-791; 13 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Computers and Information in Engineering Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5479-2
  • Copyright © 2011 by ASME


Data exchange between different computer-aided design (CAD) systems is a major problem inhibiting information integration in collaborative engineering environments. Existing CAD data format standards such as STEP and IGES enable geometric data exchange. However, they ignore construction history, features, constraints, and other parametric-based CAD data. As a result, they are inadequate for supporting modification, extension and other important higher-level functionality when accessing an imported CAD model from another CAD system. Achieving such higher-level functionality therefore often requires a time-consuming, error-prone, tedious process of manually recreating the model in the target CAD system. Based on techniques adapted from programming language research, this paper presents an approach to exchanging parametric data between CAD systems using formally-defined conversion semantics. We have demonstrated the utility of our approach by developing a prototype implementation that automates the conversion of 2D sketches between two popular CAD systems: Pro/ENGINEER and SolidWorks. We present examples showing that our approach is able to accurately convert parametric CAD data even in cases where models were constructed using operations from the source CAD system that have no direct counterpart in the target CAD system. Although the case study focuses on 2D interoperability, our approach provides formal foundations for supporting 3D and semantic interoperability between CAD systems.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In