Full Content is available to subscribers

Subscribe/Learn More  >

Use of Low/Mid-Temperature Solar Heat for Thermochemical Upgrading of Energy, With Application to a Novel Chemically-Recuperated Gas-Turbine Power Generation (SOLRGT) System

[+] Author Affiliations
Na Zhang

Chinese Academy of Sciences, Beijing, China

Noam Lior

University of Pennsylvania, Philadelphia, PA

Paper No. IMECE2009-13037, pp. 313-326; 14 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 6: Emerging Technologies: Alternative Energy Systems; Energy Systems: Analysis, Thermodynamics and Sustainability
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4379-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


This paper presents the concept of indirect thermochemical upgrading of low/mid temperature solar heat, and demonstration of its integration into a high efficiency novel hybrid power generation system. The proposed system consists of an intercooled chemically recuperated gas turbine (SOLRGT) cycle, in which the solar thermal energy collected at about 220°C is first transformed into the latent heat of vapor supplied to a reformer and then via the reforming reactions to the produced syngas chemical exergy. The produced syngas is burned to provide high temperature working fluid to a gas turbine. The solar-driven steam production helps to improve both the chemical and thermal recuperation in the system. Using well established technologies including steam reforming and low/mid temperature solar heat collection, the hybrid system exhibits promising performance: the net solar-to-electricity efficiency, based on the gross solar thermal energy incident on the collector, was predicted to be 25–30%, and it can reach up to 35% when the solar share is reduced. In comparison to conventional CRGT system, 30% of fossil fuel saving is feasible with the solar thermal share of 26%, and the system overall efficiency reaches 51.2% to 53.6% when the solar thermal share is increased from 11 to 28.8%. The overall efficiency is about 5.7%-points higher than that of a comparable intercooled CRGT system without solar assist. Due to the introduction of steam into the combustion chamber, production of NOx is near zero, and the reduction of fossil fuel use results in a commensurate 23% reduction of CO2 emissions as compared with the comparable intercooled CRGT system without solar assist.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In