0

Full Content is available to subscribers

Subscribe/Learn More  >

Perspectives for the French R&D Program for High and Very High Temperature Reactors

[+] Author Affiliations
Pascal Yvon

Commissariat à l’Energie Atomique, Gif-sur-Yvette, France

Dominique Hittner

AREVA NP, Paris La Défense, France

Jean-Michel Delbecq

EDF, Clamart, France

Paper No. HTR2008-58172, pp. 67-72; 6 pages
doi:10.1115/HTR2008-58172
From:
  • Fourth International Topical Meeting on High Temperature Reactor Technology
  • Fourth International Topical Meeting on High Temperature Reactor Technology, Volume 1
  • Washington, DC, USA, September 28–October 1, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4854-8 | eISBN: 978-0-7918-3834-1
  • Copyright © 2008 by ASME

abstract

A R&D programme has been launched addressing the needs of the development of an indirect cycle flexible modular HTR operating at 850°C for electricity generation and/or heat production for industrial processes. In the frame of this program, several significant technical challenges required to demonstrate the viability and performance of the system have been successfully addressed. Design and safety analysis needed the development of computational tools, therefore reactor physics, and thermo-fluid dynamics codes have been developed and are now in the process of being validated in the frame of international code-to-code and code to experiment benchmarks. Most importantly, the performance of the HTR/VHTR fuel identified as TRISO-coated particle must prove to be excellent in operating as well as accidental conditions. A manufacturing and quality control process has been developed and now fuel qualification based on irradiation and heating safety tests is being prepared on the basis of irradiation programs in France and in the frame of the GENERATION IV International Forum (GIF) as well as the development of fuel behaviour models including performance data, failure particle prediction and long-term integrity of the coating. Material and component technologies have been investigated in normal and accident conditions for V/HTR objectives. Significant progress has been made for vessel structures and reactor core structural elements. Major challenges still lie ahead for plate type compact intermediate heat exchangers, especially at temperatures above 850°C, but an alternative solution with helical tubes is also being developed. In order to demonstrate that materials have adequate performance over long service life under impure helium environment and constraints, the research programme focuses on microstructural and mechanical property data, long-term irradiation behaviour, corrosion, modelling and codification of design rules as well as qualification of components in representative helium test loops. The potential of this type of reactor for higher performances in terms of fuel burn-up and temperature (VHTR objective) has been explored, in particular for application to hydrogen production. The major research axes on hydrogen production technologies include the development and optimization of high temperature electrolysis and thermo-chemical water splitting processes such as sulphur/iodine or hybrid sulphur. Alternative thermo-chemical hydrogen generation processes operating at lower temperatures are also investigated. This paper addresses the R&D work performed since 2001 and the future work anticipated until 2012, where decisions about a demonstrator could be made at a European level within the Sustainable Nuclear Energy Technological Platform (SNE-TP). This program is strongly connected to the Euratom Framework Programmes as well as to GIF.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In