Full Content is available to subscribers

Subscribe/Learn More  >

Evaluation of Deviation Zone Based on Maximum Conformance to Tolerances

[+] Author Affiliations
Ahmad Barari

University of Ontario Institute of Technology, Oshawa, ON, Canada

Paper No. DETC2011-48444, pp. 759-767; 9 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Computers and Information in Engineering Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5479-2
  • Copyright © 2011 by ASME


The accurate estimation of the geometric deviations is not possible only by manipulating the Euclidian distances of the discrete measured points from substitute geometry. The real geometric deviations of a measured surface need to be calculated based on the desired tolerance zone of the surface. This fact is usually neglected in common practices in the coordinate metrology of surfaces. The importance of considering the desired tolerance zone in estimation of the optimum deviation zone is demonstrated in this paper. Then a best fit method is presented which complies with the tolerance requirements of the designed surface. The developed fitting methodology constructs a substitute geometry to minimizes the residual deviations corresponding to the given tolerance zone and the needs of down-stream operations that use the results of the inspection process. It is shown how the developed objective function can be adopted for a case of closed-loop manufacturing process, when the under-cut residual deviations of the manufactured part can be corrected by a down-stream operation. In order to validate the proposed methodology, experiments are conducted. The results show a significant reduction of uncertainties in coordinate metrology of geometric surfaces. Implementation of this method directly results in increasing the accuracy of the entire tolerance evaluation process, and less uncertainty in quality control of the manufactured parts.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In