Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Evaluation and Optimization of the Combined Solar Thermal and Electric Desiccant Cooling System

[+] Author Affiliations
Napoleon Enteria, Ryuichiro Yoshie, Kunio Mizutani

Tokyo Polytechnic University, Atsugi, Japan

Hiroshi Yoshino, Akashi Mochida

Tohoku University, Sendai, Japan

Akira Satake

Maeda Corporation, Tokyo, Japan

Paper No. IMECE2009-12800, pp. 181-192; 12 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 6: Emerging Technologies: Alternative Energy Systems; Energy Systems: Analysis, Thermodynamics and Sustainability
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4379-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Novel solar thermal desiccant cooling system has been developed. Experimental operation and evaluation of the system was conducted. System optimization and parametric investigation are so important for the improvement of system performance. However, inasmuch as evaluation through experimentation is time consuming and very expensive, numerical model is made and developed for the system. The developed model is implemented in TRNSYS program. The model is validated using the experimental data of the system. Based on the result of the numerical evaluation is conducted the area of the installed solar collector area must be reduced to 8m2 . The needed electric heater heating operation is 2 hours. Reduction of the solar collector inclination angle to 30° improved the solar energy collection. Improvement of the desiccant wheel dehumidification rate increased the system total performance. Increasing the heat exchanger (HEX 2) efficiency lowered the supply air temperature with improvement of system performance. Reduction of the system electric energy consumption increased the system electric COP (ECOP). These results of the study are of great importance for the improvement of the design of the developed system, operational procedure, and performance. The relationship and effects of the variables in the study are applicable for other researches seeking the effects of the operational parameters for the solar thermal desiccant cooling system design and processes.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In