0

Full Content is available to subscribers

Subscribe/Learn More  >

Determining the Ordinary Differential Equation From Noisy Data

[+] Author Affiliations
P. Venkataraman

Rochester Institute of Technology, Rochester, NY

Paper No. DETC2011-47658, pp. 435-445; 11 pages
doi:10.1115/DETC2011-47658
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Computers and Information in Engineering Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5479-2
  • Copyright © 2011 by ASME

abstract

A challenging inverse problem is to identify the smooth function and the differential equation it represents from uncertain data. This paper extends the procedure previously developed for smooth data. The approach involves two steps. In the first step the data is smoothed using a recursive Bezier filter. For smooth data a single application of the filter is sufficient. The final set of data points provides a smooth estimate of the solution. More importantly, it will also identify smooth derivatives of the function away from the edges of the domain. In the second step the values of the function and its derivatives are used to establish a specific form of the differential equation from a particular class of the same. Since the function and its derivatives are known, the only unknowns are parameters describing the structure of the differential equations. These parameters are of two kinds: the exponents of the derivatives and the coefficients of the terms in the differential equations. These parameters can be determined by defining an optimization problem based on the residuals in a reduced domain. To avoid the trivial solution a discrete global search is used to identify these parameters. An example involving a third order constant coefficient linear differential equation is presented. A basic simulated annealing algorithm is used for the global search. Once the differential form is established, the unknown initial and boundary conditions can be obtained by backward and forward numerical integration from the reduced region.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In