Full Content is available to subscribers

Subscribe/Learn More  >

GPU-Friendly Preconditioners for Efficient 3-D Finite Element Analysis of Thin Structures

[+] Author Affiliations
Vikalp Mishra, Krishnan Suresh

University of Wisconsin - Madison, Madison, WI

Paper No. DETC2011-47330, pp. 339-346; 8 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Computers and Information in Engineering Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5479-2
  • Copyright © 2011 by ASME


A serious computational bottle-neck in finite element analysis today is the solution of the underlying system of equations. To alleviate this problem, researchers have proposed the use of graphics programmable units (GPU) for fast iterative solution of such equations. Indeed, researchers have shown that a GPU-implementation of a double-precision sparse-matrix-vector multiplication (that underlies all iterative methods) is approximately an order of magnitude faster than that of an optimized CPU implementation. Unfortunately, fast matrix-vector multiplication alone is insufficient[[ellipsis]] a good preconditioner is necessary for rapid convergence. Furthermore, most modern preconditioners, such as incomplete Cholesky, are expensive to compute, and cannot be easily ported to the GPU. In this paper, we propose a special class of preconditioners for the analysis of thin structures, such as beams and plates. The proposed preconditioners are developed by combining the multi-grid method, with recently developed dual-representation method for thin structures. It is shown, that these preconditioners are computationally inexpensive, perform better than standard pre-conditioners, and can be easily ported to the GPU.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In