Full Content is available to subscribers

Subscribe/Learn More  >

Thermodynamic Analysis of Fermentation and Anaerobic Growth of Baker’s Yeast

[+] Author Affiliations
Kwee-Yan Teh

Sandia National Laboratories, Livermore, CA

Paper No. IMECE2009-10401, pp. 77-83; 7 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 6: Emerging Technologies: Alternative Energy Systems; Energy Systems: Analysis, Thermodynamics and Sustainability
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4379-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Thermodynamic concepts have been used in the past to predict microbial cell yield under various growth conditions. Cell yield may be the key consideration in some industrial biotechnology applications. It is not the case, however, in the context of biofuel production. In this paper, we examine the thermodynamics of fermentation and concomitant growth of baker’s yeast in continuous culture experiments under anaerobic, glucose-limited conditions, with emphasis on the yield and efficiency of ethanol production. We find that anaerobic metabolism of baker’s yeast is very efficient; the process destroys less than 7% of the total chemical exergy supplied to the fermentation reactor. However, the exergy of ethanol secreted constitutes less than 60% of the in-flowing exergy, or 75% that of glucose fed to the continuous culture. Effects of varying the specific adenosine 5′ -triphosphate (ATP) consumption rate, which is the fundamental parameter that quantifies the energetic requirements for cell growth and maintenance, are also examined.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In