0

Full Content is available to subscribers

Subscribe/Learn More  >

Study of Air Bubble Formation for Wastewater Treatment

[+] Author Affiliations
Bryan A. Miletta, R. S. Amano, Ammar A. T. Alkhalidi, Jin Li

University of Wisconsin at Milwaukee, Milwaukee, WI

Paper No. DETC2011-47065, pp. 275-280; 6 pages
doi:10.1115/DETC2011-47065
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 31st Computers and Information in Engineering Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5479-2
  • Copyright © 2011 by ASME

abstract

Aeration, a unit process in which air and water are brought into intimate contact, is an extremely important step in the process of wastewater treatment. The two most common systems of aeration are subsurface and mechanical. A mechanical system agitates the wastewater by various means (e.g. paddles, blades, or propellers) to introduce air from the atmosphere. Subsurface aeration is the release of air, in the form of bubbles, within the tank of wastewater to supply the microorganisms with the required amount of oxygen they need to metabolize and break down the organic material suspended in the wastewater. The bubbles of Air are released from the bottom of the wastewater tank through diffusers. These diffusers have a surface membrane, usually made of punched rubber, to create the fine bubbles with high oxygen transfer efficiency from supplied air to the diffusers. Since the energy crisis in the early 1970’s, there has been increased interest in these systems due to its high oxygen transfer efficiency. This paper covers experimentation of different air diffuser membranes, varying in material, used in the aeration process of wastewater treatment. Rubber, EPDM rubber (ethylene-propylene-diene Monomer) and PTFE Polytetrafluoroethylene membranes coated membranes were tested. Experimental results showed that the rubber membrane produced the smallest bubble size against expectation. This could be a result of the coating being on the top surface only and the bubble starts from inside the punch.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In