Full Content is available to subscribers

Subscribe/Learn More  >

In-Situ and Ex-Situ Investigation of Lateral Current Density Variations in a PEM Fuel Cell With Serpentine Flow Field

[+] Author Affiliations
Andrew Higier, Hongtan Liu

University of Miami, Coral Gables, FL

Paper No. IMECE2009-12941, pp. 23-28; 6 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 6: Emerging Technologies: Alternative Energy Systems; Energy Systems: Analysis, Thermodynamics and Sustainability
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4379-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


One of the most common types of flow field designs used in proton exchange membrane (PEM) fuel cell is the serpentine flow field. It is used for its simplicity of design, its effectiveness in distributing reactants and its water removal capabilities. The knowledge about where current density is higher, under the land or the channel, is critical for flow field design and optimization. Yet, no direct measurement data are available for serpentine flow fields. In this study a fuel cell with a single channel serpentine flow field is used to separately measure the current density under the land and channel on the cathode. In this manner, a systematic study is conducted under a wide variety of conditions and a series of comparisons are made between land and channel current density. Results show that under most operating conditions, current density is higher under the land than that under the channel. However, at low voltage, a rapid drop off in current density occurs under the land due to concentration losses. In order to investigate the cause of the variations of current density under the land and channel and series of ex-situ and in-situ experiments were conducted. In the ex-situ portion of the study, the contact resistance between the gas diffusion electrode (GDE) and the graphite flow plate were measured using an ex-situ impedance spectroscopy technique. The values of the contact resistance under the channel were found to be larger than that under the land. This implies that the contact resistance under the land and channel vary greatly, likely due to variations in compression under different section of the flow field. These variations in turn cause current density variations under the land and channel.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In