Full Content is available to subscribers

Subscribe/Learn More  >

Molecular Dynamics Simulation of Nanometric Machining Under Realistic Cutting Conditions

[+] Author Affiliations
R. Promyoo, H. El-Mounayri, X. Yang

Indiana University Purdue University Indianapolis, Indianapolis, IN

Paper No. MSEC_ICMP2008-72533, pp. 235-243; 9 pages
  • ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing
  • ASME 2008 International Manufacturing Science and Engineering Conference, Volume 2
  • Evanston, Illinois, USA, October 7–10, 2008
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4852-4 | eISBN: 978-0-7918-3836-6
  • Copyright © 2008 by ASME


Molecular Dynamics (MD) simulations of nanometric machining of single-crystal copper were conducted at a conventional cutting speed (5m/s) and different depths of cut (0.724 – 2.172 nm). The simulations were carried out to predict cutting forces and investigate the mechanism of chip formation at the nano level. The effect of tool rake angles and depths of cut on the mechanism of chip formation were also investigated. Tools with different rake angles, namely 0°, 5°, 10°, 15°, 30°, and 45°, were used. It was found that the cutting force, thrust force, and the ratio of the thrust force to cutting force decrease with increasing rake angle. However, the ratio of the thrust force to the cutting force is found to be independent of the depth of cut.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In