0

Full Content is available to subscribers

Subscribe/Learn More  >

Micro Ultrasonic Machining Using Oil Based Abrasive Slurry

[+] Author Affiliations
Murali M. Sundaram, Sreenidhi Cherku, K. P. Rajurkar

University of Nebraska - Lincoln, Lincoln, NE

Paper No. MSEC_ICMP2008-72138, pp. 221-226; 6 pages
doi:10.1115/MSEC_ICMP2008-72138
From:
  • ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing
  • ASME 2008 International Manufacturing Science and Engineering Conference, Volume 2
  • Evanston, Illinois, USA, October 7–10, 2008
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4852-4 | eISBN: 978-0-7918-3836-6
  • Copyright © 2008 by ASME

abstract

Advanced engineering materials posses excellent properties such as high wear resistance, and inertness to corrosion and chemical reactions. Since these materials are usually hard, brittle, chemically inert, and electrically nonconductive, they pose serious machinability challenges. Micro ultrasonic machining (Micro USM) is an emerging method for the micromachining of hard and brittle materials without any thermal damage. This paper presents the results of micro ultrasonic machining using oil based abrasive slurry. Details of the in-house built experimental setup used to conduct the experiments are explained. The influence of process parameters such as slurry medium, slurry concentration, and abrasive particle size on the performance of micro USM are reported. It was noticed that the evidence of three body material removal mechanism is predominant for micro USM using oil based slurry. In general, the material removal rate increases with the increase in the abrasive particle size for both aqueous abrasive slurry and oil based abrasive slurry. Further, material removal rate is consistently higher for experiments conducted with aqueous abrasive slurry medium. On the other hand, it is noticed that the oil based slurry medium provides better surface finish. It is also noticed that the smaller abrasive grains provide better surface finish for both aqueous, and oil based abrasive slurry mediums. Role of slurry concentration is ambiguous, as no clear trend of its effect of on process performance is evident in the available experimental results.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In