Full Content is available to subscribers

Subscribe/Learn More  >

Modelling Damping in Computer Simulations: Is All Damping Viscous?

[+] Author Affiliations
Hugh Goyder

Cranfield University, Shrivenham, Oxfordshire, UK

Paper No. DETC2011-47225, pp. 1241-1251; 11 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 23rd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5478-5
  • Copyright © 2011 by ASME


The standard damping model is the viscous dashpot for which the damping force is proportional to velocity. However, this simple model seems not to reflect real conditions where there may be viscoelastic effects, friction or air resistance. No general models for damping are available that can be developed from first principles and used in computer simulations. To help with this difficulty the fundamental theory that should underpin any general damping model is assembled here. The only available formulation for damping in mechanics is the Rayleigh dissipation model that can be used with Lagrange’s equation. This model is strictly viscous and linear. The possibility of using this model for all damping circumstances is examined. A starting point for the development of a theory is the need for causality. This need is used to formulate the concept of a pure dashpot (i.e. not mixed with other dynamic components) which is shown to be viscous. Furthermore in order to represent damping in general it is necessary to embed the viscous dashpot with other mechanical components which are not dissipative and are either linear or nonlinear. It appears that even for non-linear systems the only form of damper that is possible is the linear viscous dashpot.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In