0

Full Content is available to subscribers

Subscribe/Learn More  >

Vibration Suppression Device Having Variable Inertia Mass by MR-Fluid

[+] Author Affiliations
Taichi Matsuoka

Meiji University, Kawasaki, Kanagawa, Japan

Paper No. DETC2011-47020, pp. 1181-1185; 5 pages
doi:10.1115/DETC2011-47020
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 23rd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5478-5
  • Copyright © 2011 by ASME

abstract

Authors have proposed a new type of vibration suppression device that utilizes variable inertia mass by fluid which acts as a series inertia mass. The series inertia mass is proportional to not only square of a ratio between a diameter of a piston cylinder and a by-pass pipe, and also a density of the fluid. The resisting force characteristics in case of water or turbine oil were measured. To confirm the proposed theory and investigate effects of vibration control, vibration tests of frequency response and seismic response of one-degree-of-freedom system with the test device were carried out. The experimental results were compared with the calculated results, and the effects of vibration suppression are confirmed experimentally and theoretically. In this paper, in order to derive the effect of a variable inertia mass by using a magnet-rheological fluid, resisting force characteristics of the test device are measured in several cases of magnetic field. The orifice of the by-pass pipe can be changed in virtual, since some rare-earth magnets are installed around the by-pass pipe. It can be seen from experimental results that the inertia force is increasing as stronger magnetic fields. It is pointed out that the variable inertia mass can be derived since clustered magnetic particles in the by-pass pipe act as a virtual orifice under strong magnetic field. The relation between magnetic flux and variable inertia mass are estimated experimentally.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In