0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Analysis of a Micro-Resonator Driven by Electrostatic Combs

[+] Author Affiliations
M. T. Song, D. Q. Cao

Harbin Institute of Technology, Harbin, China

W. D. Zhu

University of Maryland, Baltimore County, Baltimore, MD

Paper No. DETC2011-47905, pp. 1067-1080; 14 pages
doi:10.1115/DETC2011-47905
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1: 23rd Biennial Conference on Mechanical Vibration and Noise, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5478-5
  • Copyright © 2011 by ASME

abstract

The dynamic response of a micro-resonator driven by electrostatic combs is investigated in this work. The micro-resonator is assumed to consist of eight flexible beams and three rigid bodies. The nonlinear partial differential equations that govern the motions of the flexible beams are obtained, as well as their boundary and matching conditions. The natural matching conditions for the flexible beams are the governing equations for the rigid bodies. The undamped natural frequencies and mode shapes of the linearized model of the micro-resonator are determined, and the orthogonality relation of the undamped global mode shapes is established. The modified Newton iterative method is used to simultaneously solve for the frequency equation and identify repeated natural frequencies that can occur in the micro-resonator and their multiplicities. The Gram-Schmidt orthogonalization method is extended to orthogonalize the mode shapes of the continuous system corresponding to the repeated natural frequencies. The undamped global mode shapes are used to spatially discretize the nonlinear partial differential equations of the microresonator. The simulation results show that the geometric nonlinearities of the flexible beams can have a significant effect on the dynamic response of the micro-resonator.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In