0

Full Content is available to subscribers

Subscribe/Learn More  >

Physics of Failure Based Virtual Testing of Communications Hardware

[+] Author Affiliations
Elviz George, Diganta Das, Michael Osterman

University of Maryland, College Park, MD

Michael Pecht

City University of Hong Kong, Hong Kong, China; University of Maryland, College Park, MD

Christopher Otte

Juniper Networks, Westford, MA

Paper No. IMECE2009-12181, pp. 191-197; 7 pages
doi:10.1115/IMECE2009-12181
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 5: Electronics and Photonics
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4378-9 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

Communications hardware for high reliability systems are starting to include modern low profile parts such as Quad Flat Pack No-lead (QFN) and Land Grid Array (LGA) packages to take advantage of their size and weight. In these parts, heat sinks often provide a conductive thermal dissipation path. Printed circuit assemblies with these parts will still need to meet the industry specific qualification requirements for thermal and vibration testing. It is beneficial to identify if the equipment will be able to meet the qualification test requirements during the design phase particularly when new technology insertions are being made. In this design, various surface mount packages like LGAs, QFNs and so on were used in a printed circuit board which included two stiffening layers with non-standard laminates. calcePWA is a simulation software which estimates the cycles to failure of components under various loading conditions using Physics of Failure (PoF). The cycles to failure simulation of this design using calcePWA software identified the critical interconnects that are at risk for failure under non-operational test conditions. The design was also evaluated under a long haul aircraft profile, with the assembly in operational state. In operational state simulation, the effectiveness of thermal shunts in reducing board to component thermal differentials was evaluated. Effects of degradations of the thermal shunts with time were used in the evaluation. Results showed that the vibration and shock reliability were less of a concern than thermal cycling for this board layout. Risk mitigation methods for thermal cycling durability were identified and recommended to be used in the system redesign.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In